Problemas sobre derivadas Facultad de Ciencias. UNAM

Justificar detalladamente sus respuestas

- 1. Justificar detalladamente su respuesta a las siguientes preguntas:
 - a) ¿Qué significa que una función f sea derivable en un punto a?.
 - b) ¿Qué significa geométricamente la derivada de una función f en un punto a?.
 - c) Sabiendo que f es derivable en un punto a, ¿Cuál es la ecuación de la recta tangente a la gráfica de f en el punto (a, f(a))?.
 - d) ¿Toda función continua en un punto a, es derivable en a?.
 - e) ¿Es necesario que f sea continua en a, para que pueda ser derivable en a?.
 - f) ¿Es suficiente que f sea continua en a, para que f sea derivable en a?.
 - g) ¿Toda función derivable en a, es continua en a?.
- 2. Partiendo directamente de la definición, demostrar que:

a) Si
$$f(x) = \frac{1}{x}$$
, entonces $f'(a) = -\frac{1}{a^2}$ para $a \ne 0$

b) Si
$$f(x) = \frac{1}{x^2}$$
, entonces $f'(a) = -\frac{2}{a^3}$ para $a \ne 0$

c) Si
$$f(x) = \sqrt{x}$$
, entonces $f'(a) = \frac{1}{2\sqrt{a}}$ para $a > 0$

3. Encontrar la ecuación de la recta tangente en el punto (a, f(a)) para las siguientes funciones:

a)
$$f(x) = \frac{1}{x}$$
 para $a \neq 0$

b)
$$f(x) = \frac{1}{x^2}$$
 para $a \ne 0$

a)
$$f(x) = \frac{1}{x}$$
 para $a \ne 0$ b) $f(x) = \frac{1}{x^2}$ para $a \ne 0$ c) $f(x) = \sqrt{x}$ para $a > 0$

- 4. Resuelva lo siguiente:
 - a) Si $f(x) = \frac{1}{x}$, demostrar que la recta tangente a la gráfica en el punto (a,f(a)), para $a \neq 0$, no intersecta a la gráfica en ningún otro punto.
 - b) Si $f(x) = \frac{1}{x^2}$, demostrar que la recta tangente a la gráfica en el punto (a, f(a)), para $a \neq 0$, intersecta a la gráfica en otro punto, que está en el lado opuesto del eje vertical.
 - c) Si $f(x) = \sqrt{x}$, demostrar que la recta tangente a la gráfica en el punto (a, f(a)), para a > 0, no intersecta a la gráfica en ningún otro punto.
- 5. Sea f derivable. A partir de la definición de derivabilidad, demostrar lo siguiente: (es conveniente hacer un dibujo explicativo):

a) Si
$$g(x) = f(x) + c$$
, entonces $g'(x) = f'(x)$

b) Si
$$g(x) = cf(x)$$
, entonces $g'(x) = cf'(x)$

c) Si
$$g(x) = bf(x) + c$$
, entonces $g'(x) = bf'(x) + c$

6. Sea f derivable. A partir de la definición de derivabilidad, demostrar lo siguiente: (es conveniente hacer un dibujo explicativo):

a) $g(x) = f(x+c) \Rightarrow g'(x) = f'(x+c)$

- b) Si $g(x) = f(cx) \Rightarrow g'(x) = cf'(cx)$
- c) f es periódica de período $a \Rightarrow f'$ es también periódica, de período a.
- 7. Calcular f'(x) para cada una de las f siguientes (sin importar los dominios de f y f')
 - i) $f(x) = sen(x + x^2)$
- ii) $f(x) = sen(x) + sen(x^2)$
- **iii)** f(x) = sen(cos(x))

- iv) f(x) = sen(sen(x))
- V) f(x) = sen(x + sen(x))
- **vi)** f(x) = sen(cos(sen(x)))
- vii) $f(x) = sen\left(\frac{\cos(x)}{x}\right)$ viii) $f(x) = \frac{sen(\cos(x))}{x}$ ix) $f(x) = \frac{\cos(\cos(x))}{x}$
- 8. Justificar detalladamente su respuesta a las siguientes preguntas:
 - a) ¿Qué establece el teorema de Rolle?.
 - b) ¿Qué establece el teorema del Valor Medio?.
 - c) ¿Se puede aplicar el teorema de Rolle a la función:

$$f:[-1,1] \to \mathbb{R}$$
 donde $f(x) = 2x^2 - x - 1$.

d) ¿Se puede aplicar el teorema del Valor Medio a la función:

$$f:(-0.5,1) \to \mathbb{R}$$
 donde $f(x) = 2x^2 - x - 1$?.

e) ¿Se puede aplicar el teorema de Rolle a la función: $f:[-3,3] \to \mathbb{R}$ donde

$$f(x) = \frac{x^2 - 4}{x - 2}$$
 si $x \ne 2$ y $f(x) = 5$ si $x = 2$

- 9. Justificar detalladamente sus respuestas a las siguientes preguntas:
 - a) Si $\lim_{x\to a} f(x) = 0$ y $\lim_{x\to a} g(x) = 0$, ¿Qué establece la regla de L'Hôpital?.
 - b) ¿Se puede aplicar la regla de L'Hôpital para calcular: $\lim_{x \to 2} \frac{x^3 3x 2}{x^2 + 5x + 2}$?.
 - c) En el siguiente procedimiento ¿Está bien aplicada la regla de L'Hôpital?

$$\lim_{x \to -1} \frac{x^3 - 3x + 2}{x^2 + 2x + 2} = \lim_{x \to -1} \frac{3x^2 - 3}{2x + 2} = \lim_{x \to -1} \frac{6x}{2} = -3$$

d) ¿Dónde se encuentra el error en la siguiente aplicación de la regla de L'Hôpital?

$$\lim_{x \to 2} \frac{x^3 - 3x^2 + 2x}{x^2 - x - 2} = \lim_{x \to 2} \frac{3x^2 - 6x + 2}{2x - 1} = \lim_{x \to 2} \frac{6x - 6}{2} = 3$$

- 10. Encontrar las ecuaciones de las rectas tangentes a las gráficas de las siguientes curvas en el punto indicado.
 - a) f(x) = sen(x) en (0,0)

- **b)** $f(x) = 3x^2 3x 1$ **en** (0, -1)
- c) $\frac{x^2}{4} + \frac{y^2}{1} = 1$ en x = 1, $y = \frac{\sqrt{3}}{2}$
- **d)** $x^2 + y^2 = 1$ **en** $x = -\frac{1}{2}$, $y = \frac{\sqrt{3}}{2}$

e) $f(x) = 2\cos(x)$ **en** (0,2)

f) $f(x) = \frac{1}{x}$ en x = 1, y = 1

11. Para cada una de las siguientes funciones f , hallar f'(f(x))

a)
$$f(x) = \frac{1}{1+x}$$
 b) $f(x) = sen(x)$ **c)** $f(x) = x^2$

b)
$$f(x) = sen(x)$$

c)
$$f(x) = x^2$$

d)
$$f(x) = 17$$

12. Para cada una de las siguientes funciones f, hallar f(f'(x))

a)
$$f(x) = \frac{1}{x}$$

b)
$$f(x) = x^2$$
 c) $f(x) = 17x$ **d)** $f(x) = 17$

c)
$$f(x) = 17x$$

d)
$$f(x) = 17$$

13. Para cada una de las siguientes funciones, hallar el máximo y el mínimo en los intervalos indicados, hallando los puntos del intervalo en que la derivada es cero y comparando los valores en estos puntos, con los valores en los extremos.

a)
$$f(x) = x^3 - x^2 - 8x + 1$$
 sobre [-2,2] b) $f(x) = x^3 + x + 1$ sobre [-1,1]

b)
$$f(x) = x^3 + x + 1$$
 sobre [-1,1]

c)
$$f(x) = 3x^4 - 8x^3 + 6x^2$$
 sobre $\left[-\frac{1}{2}, \frac{1}{2} \right]$ d) $f(x) = \frac{1}{x^3 + x + 1}$ sobre $\left[-\frac{1}{2}, 1 \right]$

d)
$$f(x) = \frac{1}{x^3 + x + 1}$$
 sobre $\left[-\frac{1}{2}, 1 \right]$

e)
$$f(x) = \frac{x+1}{x^2+1}$$
 sobre $\left[-1, \frac{1}{2}\right]$ **f)** $f(x) = \frac{x}{x^2-1}$ **sobre** $\left[0, 5\right]$

f)
$$f(x) = \frac{x}{x^2 - 1}$$
 sobre [0,5]

14. Utilizar los resultados sobre el significado de la derivada para esbozar la gráfica de las siguientes funciones (aplicar criterios de la primera y segunda derivada)

a)
$$f(x) = x + \frac{1}{x}$$

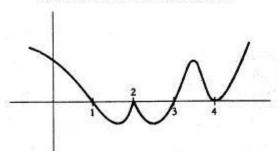
b)
$$f(x) = x + \frac{3}{x^2}$$

a)
$$f(x) = x + \frac{1}{x}$$
 b) $f(x) = x + \frac{3}{x^2}$ **c)** $f(x) = \frac{x^2}{x^2 - 1}$ **d)** $f(x) = \frac{1}{x^2 + 1}$

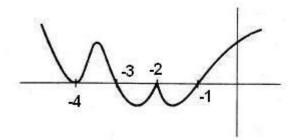
d)
$$f(x) = \frac{1}{x^2 + 1}$$

15. Cada una de las figuras siguientes, representan la gráfica de la derivada de una función f. Hallar todos los máximos y mínimos locales de la función f correspondiente.

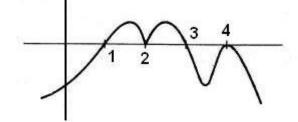
Gráfica de la derivada de f



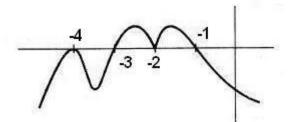
Gráfica de la derivada de f



Gráfica de la derivada de f



Gráfica de la derivada de f



16. Demostrar que:

- a) Entre todos los rectángulos de igual perímetro, el de mayor área es el cuadrado.
- b) La suma de un número y su recíproco es por lo menos 2.
- c) Entre todos los rectángulos de área dada el cuadrado es el de perímetro mínimo.
- d) Entre todos los rectángulos que pueden inscribirse en una circunferencia, el cuadrado es el de área máxima. (Figura 1, página 4 de esta tarea).
- e) La razón de variación del volumen de una esfera respecto a su radio, es igual a su área.
- 17. Calcular los siguientes límites (Analizar si se puede aplicar la regla de L'Hôpital)

$$\mathbf{a)} \lim_{x \to 0} \frac{x}{\tan(x)}$$

b)
$$\lim_{x\to 0} \frac{\cos^2(x)-1}{x^2}$$

(c)
$$\lim_{x\to 0} \frac{b^2 sen(ax)}{x}$$

d)
$$\lim_{x\to 0} \frac{\sqrt{1+x}-1}{x}$$

a)
$$\lim_{x\to 0} \frac{x}{\tan(x)}$$
 b) $\lim_{x\to 0} \frac{\cos^2(x)-1}{x^2}$ (c) $\lim_{x\to 0} \frac{b^2 sen(ax)}{x}$ d) $\lim_{x\to 0} \frac{\sqrt{1+x}-1}{x}$ e) $\lim_{x\to 1} \frac{2x^2-4x+2}{5x^2-10x+5}$ f) $\lim_{x\to 0} \frac{x-sen(x)}{x^2}$

$$f) \lim_{x\to 0} \frac{x-sen(x)}{x^2}$$

18. Dadas las siguientes funciones, encontrar un punto que satisfaga el teorema de Rolle.

a)
$$f:[-2,0] \to \mathbb{R}$$
 tal que $f(x) = x^2 + 2x + 1$ **b)** $f:[0,2] \to \mathbb{R}$ tal que $f(x) = x^2 - 2x + 1$

b)
$$f:[0,2] \to \mathbb{R}$$
 tal que $f(x) = x^2 - 2x + 1$

c)
$$f:[-2,0] \to \mathbb{R}$$
 tal que $f(x) = \frac{1}{x^2 + 2x + 1}$ **d)** $f:[0,2] \to \mathbb{R}$ tal que $f(x) = \frac{1}{x^2 - 2x + 1}$

d)
$$f:[0,2] \to \mathbb{R}$$
 tal que $f(x) = \frac{1}{x^2 - 2x + 1}$

19. Dadas las siguientes funciones, encontrar un punto que satisfaga el teorema del Valor Medio.

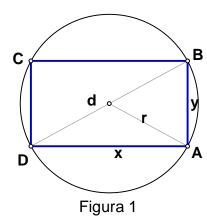
a)
$$f:[-1,1] \to \mathbb{R}$$
 tal que $f(x) = x^{\frac{4}{3}}$ **b)** $f:[-1,2] \to \mathbb{R}$ tal que $f(x) = x^2 - 1$

b)
$$f:[-1,2] \to \mathbb{R}$$
 tal que $f(x) = x^2 - 1$

c)
$$f:[0,2] \to \mathbb{R}$$
 tal que $f(x) = x^3 - 2x - 1$

c)
$$f:[0,2] \to \mathbb{R}$$
 tal que $f(x) = x^3 - 2x - 1$ **d)** $f:[-2,0] \to \mathbb{R}$ tal que $f(x) = x^3 - 2x + 2$

- 20. Encuentre el punto para el cual:
 - a) La recta tangente a la parábola $f(x) = x^2 7x + 3$ es paralela a la recta 5x + 3y 3 = 0.
 - b) la recta tangente a la parábola $f(x) = x^2 7x + 3$ es paralela a la recta 3x y 4 = 0.
 - c) la recta tangente a la parábola $f(x) = x^2 7x + 3$ es paralela a la recta 2x + 3y 3 = 0.
- 21. Hallar la altura del cono de volumen máximo que puede inscribirse en una esfera de radio r. (Figura 2)



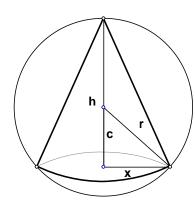


Figura 2

Octubre de 2010.